1,562 research outputs found

    The evolution of cash transactions: some implications for monetary policy

    Get PDF
    This paper considers the implications of a decreasing demand for cash transactions under several monetary policy regimes. A policy of nominal-interest-rate targeting implies that a secular decline in the volume of cash transactions unambiguously leads to accelerating inflation. A policy of maintaining a fixed composition of government liabilities leads to accelerating (decelerating) inflation if agents have sufficiently high (low) levels of risk aversion. A policy of inflation targeting produces falling nominal and real interest rates, while a policy of fixing the rate of money growth can easily lead to indeterminacy and endogenous oscillation in interest rates.Payment systems ; Monetary policy - United States ; Money

    Addressing health literacy in patient decision aids

    No full text
    MethodsWe reviewed literature for evidence relevant to these two aims. When high-quality systematic reviews existed, we summarized their evidence. When reviews were unavailable, we conducted our own systematic reviews.ResultsAim 1: In an existing systematic review of PtDA trials, lower health literacy was associated with lower patient health knowledge (14 of 16 eligible studies). Fourteen studies reported practical design strategies to improve knowledge for lower health literacy patients. In our own systematic review, no studies reported on values clarity per se, but in 2 lower health literacy was related to higher decisional uncertainty and regret. Lower health literacy was associated with less desire for involvement in 3 studies, less question-asking in 2, and less patient-centered communication in 4 studies; its effects on other measures of patient involvement were mixed. Only one study assessed the effects of a health literacy intervention on outcomes; it showed that using video to improve the salience of health states reduced decisional uncertainty. Aim 2: In our review of 97 trials, only 3 PtDAs overtly addressed the needs of lower health literacy users. In 90% of trials, user health literacy and readability of the PtDA were not reported. However, increases in knowledge and informed choice were reported in those studies in which health literacy needs were addressed.ConclusionLower health literacy affects key decision-making outcomes, but few existing PtDAs have addressed the needs of lower health literacy users. The specific effects of PtDAs designed to mitigate the influence of low health literacy are unknown. More attention to the needs of patients with lower health literacy is indicated, to ensure that PtDAs are appropriate for lower as well as higher health literacy patients

    The Energetics of Molecular Gas in NGC 891 from H_2 and Far-infrared Spectroscopy

    Get PDF
    We have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC 891, using a 34 position map in the lowest three pure rotational H_2 lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction-corrected total luminosity of ~2.8 × 10^7 L_☉, or 0.09% of the total-infrared luminosity of NGC 891. The H_2 line ratios are nearly constant along the plane of the galaxy—we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H_2 level excitation temperatures increase monotonically indicating that there is more than one component to the emitting gas. More than 99% of the mass is in the lowest excitation (T_(ex) ~ 125 K) "warm" component. In the inner galaxy, the warm H_2 emitting gas is ~16% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photodissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [O I] and [C II] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70%) of the S(1) line arise from low excitation PDRs, while most (80%) of the S(2) and the remainder of the S(1) line emission arise from low-velocity microturbulent dissipation

    Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Get PDF
    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years

    The effects of open market operations in a model of intermediation and growth

    Get PDF
    We examine an otherwise standard model of capital accumulation to which spatial separation and limited communication create a role for money and shocks to portfolio needs create a role for banks. In this context we examine the existence, multiplicity, and dynamical properties of monetary equilibria with positive nominal interest rates. Moderate levels of risk aversion can lead to the existence of multiple monetary steady states, all of which can be approached from a given set of initial conditions. In addition, even if there is a unique monetary steady state, monetary equilibria can be indeterminate, and oscillatory equilibrium paths can be observed. Thus financial market frictions are a potential source of both indeterminacies and endogenously arising economic volatility. ; We also consider the consequences of monetary policy actions that rearrange the composition of government liabilities. Contractionary monetary policy activities can have complicated consequences, depending especially on the nature of the steady state equilibrium that obtains when there are multiple steady states. Under plausible conditions, however, a permanent contractionary change in monetary policy raises both the nominal rate of interest and the rate of inflation, and reduces long-run output levels. Thus liquidity provision by a central bank - just as by the banking system as a whole - can be growth promoting. Loose monetary policy also is conducive to avoiding development trap phenomena.Open market operations

    Uranus and Neptune: Shape and Rotation

    Full text link
    Both Uranus and Neptune are thought to have strong zonal winds with velocities of several hundred meters per second. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets' radio signals and of fits to the planets' magnetic fields; 17.24h and 16.11h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet's deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ~16.58h for Uranus and ~17.46h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.Comment: Accepted for publication in Icarus, 20 pages, 4 tables, 9 figure

    Concatenation and Concordance in the Reconstruction of Mouse Lemur Phylogeny: An Empirical Demonstration of the Effect of Allele Sampling in Phylogenetics

    Get PDF
    The systematics and speciation literature is rich with discussion relating to the potential for gene tree/species tree discordance. Numerous mechanisms have been proposed to generate discordance, including differential selection, longbranch attraction, gene duplication, genetic introgression, and/or incomplete lineage sorting. For speciose clades in which divergence has occurred recently and rapidly, recovering the true species tree can be particularly problematic due to incomplete lineage sorting. Unfortunately, the availability of multilocus or “phylogenomic” data sets does not simply solve the problem, particularly when the data are analyzed with standard concatenation techniques. In our study, we conduct a phylogenetic study for a nearly complete species sample of the dwarf and mouse lemur clade, Cheirogaleidae. Mouse lemurs (genus, Microcebus) have been intensively studied over the past decade for reasons relating to their high level of cryptic species diversity, and although there has been emerging consensus regarding the evolutionary diversity contained within the genus, there is no agreement as to the inter-specific relationships within the group. We attempt to resolve cheirogaleid phylogeny, focusing especially on the mouse lemurs, by employing a large multilocus data set. We compare the results of Bayesian concordance methods with those of standard gene concatenation, finding that though concatenation yields the strongest results as measured by statistical support, these results are found to be highly misleading. By employing an approach where individual alleles are treated as operational taxonomic units, we show that phylogenetic results are substantially influenced by the selection of alleles in the concatenation process. Includes supplementary materials
    • 

    corecore